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ABSTRACT 
Finite element based solution techniques have been developed to replace the conventional 'wall functions' 
in the 'near wall zone' of general confined turbulent flows. The technique is validated by application to 
the turbulent flow and associated heat transfer within a square/rectangular cross-sectioned duct rotating 
about an axis orthogonal to its longitudinal axis. The predicted results are compared with those from 
experimental measurements and excellent agreement is obtained when using the advocated methodology. 
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INTRODUCTION 

In a previous publication1, solution inaccuracies associated with the utilization of logarithmic 
wall functions were identified and an alternative procedure, replacing such wall functions in the 
'near wall zone', was advocated. The 'wall function' approach, derived from Prandtl's mixing 
length concept, is strictly applicable only when the flow is unidimensional2. When two- or 
three-dimensional flow problems are considered, such a technique, although usually resulting 
in a converged solution, cannot be considered to be valid. An immediate consequence is the 
associated inaccuracies in the distribution of turbulent kinetic energy, particularly close to the 
solid boundary. A cursory examination of the velocity distribution and mass balance, however, 
is insufficient and a detailed investigation of velocity gradients, turbulence kinetic energy within, 
and adjacent to, the near wall zone is necessary before inaccuracies can be quantified. These 
are manifest in both the shear distribution and pressure gradients. In addition, if heat transfer 
is being quantified, then serious errors can result in the magnitude of local heat flux. This has 
been adequately demonstrated when numerical 'experiments' were conducted on the prediction 
of flow and heat transfer in a cooling duct rotating about an axis orthogonal to its longitudinal 
axis (Figure 7). It has been demonstrated that errors, particularly in the prediction of heat 
transfer, become progressively larger as the rotational speed increases and when the overall flow 
is less developed. 

In the present paper the techniques for depicting the generalized equations of flow near solid 
boundaries, outlined in Reference 1, are extended to more general flow situations in three 
dimensions. 

GENERALIZED NEAR WALL ZONE SOLUTION PROCEDURE 
Techniques1 developed for the accurate prediction of the distribution of the pertinent variables 
in the near wall zone were restricted to situations where flows were fully developed. A consequence 
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is that resultant velocities were parallel to solid boundaries and invariant with distance along 
a duct. When such a restriction is imposed then the governing equations could be simplified 
and unidimensional finite elements normal to the solid boundary could be used to describe the 
flow field. However, such simplifications are not possible for developing or circulating flows 
associated with rotating systems or complex geometries. Under these circumstances, the full 
form of the governing equations have to be utilized and appropriate steps taken to spatially 
discretize, formulate matrices and develop solution algorithms accordingly. 

One technique is to discretize the near wall region using unidimensional elements in each of 
the global orthogonal directions, x, y and z. The corresponding equations can then be solved 
for each direction using the corresponding orthogonal finite elements. This leads to an alternate 
direction implicit solution technique using the following equations: 

x-direction: 

y-direction: 

z-direction: 

where ρ is the fluid density, U, V, W the time-averaged velocities in the x, y, z orthogonal global 
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directions, respectively, μe the effective velocity, i.e. (μ + μ1), μ1 the turbulent viscosity and X, 
Y, Z are the body forces again in the x, y, z directions, respectively. The overcaret can denote 
values derived by solving corresponding equations in directions other than that applicable to 
the equation being analysed. Additionally, for variables being currently analysed, the overcaret 
denotes previous iteration values on that variable which linearizes, with respect to that variable, 
the equation being analysed. 

A segregated approach is used such that. is derived from a pressure Poisson equation. Details 
of the segregation procedure can be found in Reference 3. Each equation is solved in the 
appropriate direction and an alternative direction implicit procedure adopted. As indicated 
previously, the pressure term, at each iteration, is recovered using a segregated approach4. 
Although the method is relatively simple, the rate of convergence can be affected, to a considerable 
degree, by the choice of initial conditions. This is in common with most iterative procedures 
where the majority of terms in the current equation being solved are previous iteration values 
from alternate directions. However, the solver proved to be quite successful4 when analysing 
two-dimensional turbulent flows. 

If variations in the independent variables parallel to a solid boundary in the x, y plane (Figure 
2) are small then unidimensional or two-dimensional elements arranged in the x-z and y-z 
planes can be used. When conducting analyses using such element configurations, with the more 
stringent spatial integration, converged solutions are obtained, as expected, more rapidly than 
with unidimensional elements in three directions. However, this is offset by substantial increases 
in both computer storage requirements and CPU time. 

In general, a better choice of element configuration, which also accommodates variable 
variations in both directions in the transverse x-y plane, is that shown on Figure 3. In this case 
two-dimensional elements are used in the transverse plane which, in the near wall zone, 
are connected by one-dimensional elements in the axial, z, direction. This system ensured rapid 
convergence and avoids, for developing or convective flows, the greater computational demands 
commensurate with full spatial discretization. Under these conditions the governing equations 
are: 
x-direction: 
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where 

and 

For the one equation model of turbulence the necessary closure equation on the turbulent 
kinetic energy, k, is 

in which CD is a constant, l a local length scale and Gk is given by: 

BOUNDARY CONDITIONS AND 'NEAR WALL' MATCHING 

In the transverse, x-y, plane, when incorporating two-dimensional elements in the near wall 
zone, boundary conditions are required at both the solid boundary and at the interface between 
the main flow domain and the near wall zone (Figure 4). 

Solid wall 
At all points on the solid wall the 'no-slip' condition is satisfied. Since no turbulence exists 

and no flow normal to the wall, then both the turbulence kinetic energy, k, and the pressure 
gradient ∂P/∂n are zero. Therefore, 

where n denotes the direction of the outward normal to the boundary. 
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Plane of symmetry 
All gradients normal to this plane can be set to zero such that: 

Interfacial conditions 
In order to initiate a numerically based solution procedure for the Navier-Stokes equations 

including any closure equations, an initial distribution of variables must be assumed to start an 
iterative process. 

In common with the flow domain interfacial boundary conditions are required at the limit 
of the near wall zone. The iterative procedure adopted is as follows: (i) set boundary conditions; 
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(ii) set an initial distribution of all variables both in the main flow domain and the near wall 
zone; (iii) solve the governing equation in the main flow domain to obtain U, V, W, P and k, 
details of this procedure can be found in Reference 1; (iv) using element shape functions, evaluate 
the normal gradients of all variables along the interface; (v) impose the values obtained in (iv) 
at the interface and solve, for the axial gradients of all the variables in the near wall zone. Using 
(4) to (8), solve, using an alternate direction implicit iterative procedure, for all variables in 
the near wall zone; (vi) values of the primitive variables and kinetic energy obtained in (v) are 
then imposed on the interface, as boundary conditions for the main flow domain; (vii) repeat 
(iii) to (vi) to convergence. 

EXAMPLES AND DISCUSSION 

Fully developed flow is amongst the type of problems previously analysed using unidimensional 
elements in the near wall zone1. An example of current interest is that of fully developed flow 
in a rotating square duct of prismoidal section, 2.75 mm square, rotating about an axis orthogonal 
to its longitudinal axis. The Rossby number is 0.01 and is calculated from: Ro = Ωd/Ub in which 
Ω is the angular speed of rotation, d the hydraulic diameter of the duct and Ub the bulk 
longitudinal velocity. 

For this problem the algebraic stress turbulence model5 was found to be the more accurate 
and the longitudinal velocity profile obtained is compared with both finite difference predictions6 

and experimental measurements7, as shown in Figure 5. Solutions obtained when universal laws 
and element discretization are used in the near wall zone are also presented. The corresponding 
distribution of wall shear stress around the inside face of the duct is shown on Figure 6. 

The results indicate that, due to Coriolis effects arising from the duct rotation, forces the high 
momentum fluid towards the trailing face resulting in a lower wall shear on the leading face. 
The corner stagnation conditions correspond to the near zero shear as illustrated on Figure 6. 
It is immediately apparent that, although differences in the longitudinal velocity profile are 
small, there are significant differences in the shear stresses as obtained from the different 
techniques. Both the finite difference method6 and logarithmic law seem to be generally 
under-predictive. The better agreement between experiment and theory is when finite elements 
are used in the near wall zone. Scrutiny of the longitudinal velocity profiles and conservation 
of mass is, therefore, not conclusive and, to this point, a clear investigation should be undertaken 
by comparing wall shear stresses. Evidently, this depends on local velocity gradients which are 
primarily dependent on the spatial description of variables near the solid wall. 

Having illustrated that the near wall element technique could be superior to the other methods, 
a more stringent example will now be considered. In this case developing flow is considered 
with rotation and heat transfer. 

In this example, the same Rossby number, but associated with a rectangular rotating duct of 
dimensions indicated on Figure I, is considered. Upstream boundary conditions, for the flow 
only, consist of a constant uniform longitudinal velocity, top hat, and zero secondary flow. It 
is apparent, from Figure 7, that secondary patterns are generated, as expected, immediately 
downstream of the entrance. These gradually develop into a single secondary pattern at 
progressive downstream sections. The discrepancies between the case where log laws are used 
and when elements are employed are significant near the entry but gradually diminish with 
longitudinal distance. This is to be expected since the universal profile can, in reality, only 
accommodate unidimensional flow and, therefore, cannot be considered to be accurate, 
particularly at the upstream sections. 

In this case the duct was subjected to a heat flux. The coupled solid/fluid computational 
method8 was adopted and the boundary conditions are illustrated as in Figure 8. The resulting 
temperature contours are as shown in Figure 9. Although these show differences between both 
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Table 1 Comparison of heat transfer in a rectangular rotating duct using different near wall modelling (developing 
flow Ro = 0.010) 

Axial position, z (cm) 

Tempera-
ture, 
T(°C) 

Nusselt 
number 

Log law 
N.W.E 
Experiments 

Log law 
N.W.E. 
Experiments 

23.625 

32.32 
32.17 
32.15 

23.850 

35.11 
34.81 
34.50 

95.17 
118.91 
130.0 

24.300 

40.41 
39.85 
39.60 

24.750 

45.36 
44.54 
44.44 

52.34 
55.37 
60.00 

25.575 

53.54 
52.33 
52.30 

26.400 

60.64 
59.09 
59.10 

33.67 
34.89 
37.00 

27.900 

71.11 
69.07 
68.90 

29.400 

78.85 
76.52 
72.01 

24.56 
25.55 
28.50 

31.650 

84.89 
82.56 
75.34 

33.900 

83.23 
81.53 
77.03 

24.31 
25.51 
29.70 

36.150 

73.59 
72.75 
72.89 

models, a more informative comparison, relating to Nusselt numbers, is given on Table 1. For 
present purposes the Nusselt number is defined as follows: 
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in which f is the local heat flux at the solid boundary and ∆TW the difference in temperature 
between the solid wall and the local bulk value. 

Again, although the temperature plots do not show any significant differences, the differences 
between Nusselt numbers is quite appreciable, being of the order of 25% at the upstream sections. 
Since the values associated with the near wall element methodology are consistently larger, the 
recirculation must be correspondingly greater. This tends to draw more heat from the solid 
surfaces into the fluid. Again the values determined using the near wall element technique are 
significantly closer to the experimental results with a maximum error of approximately 12%. 

Having established that the near wall element technique results are consistently closer to 
experiment, attention is turned to flows with a higher Rossby number and a limited parametric 
study into the effect of varying the location of the interface between the main flow domain and 
the near wall zone. The square duct is that defined previously and the Rossby number has been 
increased to 0.075. The resulting distributions of axial velocity and turbulence kinetic energy at 
the plane of symmetry for different locations of the interface are shown in Figure 10. These plots 
illustrate a marked difference between the profiles obtained under different conditions. It is clear 
that there are also significant differences between the results obtained when using universal 
profiles at different y+ magnitudes. However, such discrepancies are not apparent when near 
wall elements are used. A similar conclusion can be drawn from a scrutiny of the turbulence 
kinetic energy profiles. Indeed, in this case the maximum difference between the worst log law 
case and the near wall element results is approximately 30%. A most disconcerting feature of 
this exercise is the large variation in the results when using the log law technique and simply 
varying the y+ magnitudes. It should be pointed out at this juncture that the y+ values used 
are within those advocated to be acceptable by most other numerical analysts. This is obviously 
open to question. 
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For developing flow, in the same duct with Rossby number and thermal conditions, illustrated 
on Figure 11, the differences between the axial velocities and kinetic energies, again at the plane 
of symmetry, are more pronounced (Figure 12). A more distorted pattern is obtained when 
using the near wall elements such that the higher momentum fluid moves towards the trailing face. 

The significance of the variation in the longitudinal velocity is again reflected in the variation 
of wall shear stress. This is not presented but the trend is similar to that reproduced in Figure 6. 

Comparing heat transfer characteristics there are significant differences between the calculated 
values, particularly Nusselt number (Table 2). Once again, the discrepancies are larger near the 
duct inlet, being of the order of 25% although maximum temperature differences are only 6%. 

CONCLUSIONS 

An alternative technique is suggested and tested for the numerical evaluation of independent 
variables within the near wall zone of confined turbulent flow. The advocated method utilizes 
conventional finite element discretization in the region close to the wall which captures the 
characteristics of the flow in all directions. This has been shown to be superior to the usually 
advocated 'universal laws' which not only misrepresents the flow pattern but is also very restricted 
with regard to the location of the limit of the near wall zones. This is not the case when finite 
elements are used. 

The apparent independence of the results on the location of the near wall zone is a distinct 
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Table 2 Comparison of heat transfer in a square rotating duct using different near wall modelling (developing flow, 
Ro = 0.075) 

Axial position, z (cm) 

Tempera- Log law 
ture, T(°C) N.W.E. 

Nusselt Log law 
number N.W.E. 

23.625 

30.23 
30.06 

23.850 

32.94 
32.41 

135.7 
178.8 

24.300 

38.08 
37.03 

24.750 

42.86 
41.63 

81.3 
89.5 

25.575 

50.70 
48.93 

26.400 

57.45 
55.14 

40.1 
44.7 

27.900 

67.17 
64.04 

29.400 

74.09 
70.62 

34.5 
37.8 

31.650 

79.49 
76.12 

33.900 

78.56 
75.73 

34.2 
37.4 

36.150 

69.98 
67.91 

advantage when undertaking an analysis. In reality this value must be checked, particularly 
when log laws are employed, to ensure that y+ remains within a very narrow band and even 
for the small band tested herein the variations can be significant. 

Consequent to the inability of log laws to predict the flow field is the marked effect on the 
recirculation pattern and heat transfer. Although a cursory inspection of longitudinal profiles 
could lead to the acceptance of predictions, a much closer scrutiny in terms of shear stress and, 
if applicable, heat transfer should always be undertaken. 
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